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Quantum Logic as a Basis for Computations†
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It is shown that computations can be founded on the laws of the genuine
(Birkhoff–von Neumann) quantum logic treated as a particular version of
Łukasiewicz infinite-valued logic. A new way of encoding nonexact data which
encodes both the value of a number and its “fuzziness” is introduced. A simple
example of a full adder that works in the proposed way is given and it is compared
with other designs of quantum adders existing in the literature. A controversy
between the meaning of the very term “quantum logic” as used recently within
the theory of quantum computations and the traditional meaning of this term is
briefly discussed.

1. INTRODUCTION

In the rapidly developing theory of quantum computations (QC) it is
sometimes claimed that QC should be (Peres, 1985) or that they are (Vedral
and Plenio, 1998) based on a new kind of nonclassical (non-Boolean) logic.
This hypothetical logic is sometimes called quantum logic (Turchette et al.,
1995; Vedral and Plenio, 1998) in spite of the fact that since Birkhoff and
von Neumann’s (1936) historic paper this term has had a defined (although
not unique) meaning: It usually denotes an orthomodular lattice (sometimes
more general orthomodular poset) admitting an order determining set of
probability measures, i.e., it denotes an algebraic structure that mimics the
order-theoretic properties of the set of all closed subspaces of a Hilbert space.
Contrary to this “orthodox” meaning of the term quantum logic adopted
throughout the traditional physical, mathematical, logical, and philosophical
literature (see the nearly 2000 entries in Pavičić’s (1992) “Bibliography on
quantum logics and related structures”), the meaning ascribed to this term
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within the QC theory is rather vague, which, for the time being, does not
allow one to compare these two objects. Such a comparison is of course a
very important problem, but it will be possible only when quantum logic in
the QC sense is precisely defined. Therefore, throughout the rest of this paper
the term quantum logic (usually abbreviated as QL) will be used exclusively
in its original sense.

In spite of the above-mentioned objections, QC theorists are right when
they claim that some operations on quantum bits (qubits), especially those
that yield superpositions of qubits, and also the superpositions of qubits
themselves “have no logical meaning from the point of view of conventional
computer science” (Peres, 1985). Nevertheless, some logic gates frequently
used within the QC theory, like NOT, controlled-NOT, and Toffoli gates,
work in a purely classical way and of course the same refers to any computa-
tional network constructed exclusively out of these gates. In particular, a full
adder, which, as a touchstone of any theory of computations, is desribed in
the QC papers by Peres (1985) and Vedral et al. (1996, 1998), according to
Peres (1985), is “effectively classical” since superpositions of qubits “appear
in the dynamics but not in the logic of the quantum computer.” Let us
note that in the case of these adders the nonclassical operation of forming
superpositions may appear only at the stage of preparing the input data, but,
contrary to some other, more sophisticated quantum algorithms (see, e.g.,
Aharonov, 1998; Vedral et al., 1996, 1998; Rieffel and Polak, 1998), it does
not appear within the algorithm itself.

The problem of establishing connections between a QL and a logic that
underlies more sophisticated quantum algorithms is a very interesting one
and will surely attract much attention in the future, as soon as the latter object
is fully recognized and precisely defined. In the present paper, which is a
step toward fulfilling Peres (1985) program to “try to generalize computer
science, so that it would admit a continuous logic where a.↑& 1 b.↓& (with
complex coefficients a and b) would have a meaning,” I will give an example
of a full adder that works according to the laws of a QL instead of a two-
element Boolean algebra. The paper grew out of the author’s part of a
joint contribution (Pykacz and Zapatrin, 1997) in which it was, however,
erroneously claimed that all previously studied quantum computations were
based on the classical logic. I am greatly indebted to an anonymous referee
of the present paper for drawing my atttention to the fact that such a judgement
is, in general, unfounded.

The paper is devoted to the very general problem of the possibility of
performing computations with the use of a QL instead of a two-element
Boolean algebra. The studies are confined to a purely mathematical descrip-
tion of such computations, and the possibility of their physical realization is
not studied (therefore, the standard QC formalism is not adopted here).
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However, since a QL is believed to be the “intrinsic” logic of quantum
systems, I do hope that such a possibility could be found in the future. The
given example shows that a computing machine that would work according
to the laws of a QL would accommodate in a natural way “probabilistic” (or
“fuzzy”) features of quantum theory. Therefore, it would be automatically a
“fuzzy” computer well suited to deal with vague or imprecise data.

2. QL AS A FAMILY OF FUZZY SETS AND AS MANY-
VALUED LOGIC

Birkhoff and von Neumann (1936), the founding fathers of the QL
theory, in their historic paper noticed that a lattice of closed subspaces of a
Hilbert space (or, equivalently, a lattice of orthogonal projections onto these
subspaces), which is a standard example of a QL, forms an order-theoretic
structure which is a proper generalization of a Boolean algebra. Since Lin-
denbaum–Tarski algebra of any theory governed by laws of the classical
logic is a Boolean algebra, Birkhoff and von Neumann concluded that the
logical structure of quantum mechanics is nonclassical.

Since 1936 the QL theory has greatly evolved and branched into a
multitude of approaches such that the term “quantum logic” does not have
a unique meaning throughout the literature. In the present paper by a quantum
logic I mean a partially ordered, orthocomplemented, orthomodular set
(abbreviated orthomodular poset) admitting an order determining set of prob-
ability measures. Therefore, a QL is an order-theoretic structure which is a
nondistributive generalization of a Boolean algebra. The reader interested in
exact definitions of these notions is referred to any of numerous textbooks
on the QL theory, for example, Beltrametti and Cassinelli (1981) or Pták and
Pulmannová (1991).

Formal similarity of some operations on fuzzy sets to order-theoretic
operations defined on orthomodular posets led the author to study the possibil-
ity of representing an abstract QL in a form of a suitable family of fuzzy
sets. These attempts were completed in Pykacz (1994), where it was shown
that any orthomodular poset L admitting an ordering set of probability mea-
sures S can be isomorphically represented as a family +(S) of fuzzy subsets
of S such that:

(i) +(S) contains the empty set 0⁄ .
(ii) +(S) is closed under the standard fuzzy set complementation, i.e.,

A P +(S) implies A8 5 1 2 A P +(S) (1)

(iii) +(S) is closed under Giles unions of pairwisely weakly disjoint sets,
i.e., if Ai u Aj 5 0⁄ for i Þ j, then ti Ai P +(S).
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(iv) The empty set is the only set in +(S) that is weakly disjoint with
itself, i.e., if A u A 5 0⁄ , then A 5 0⁄ .

Where Giles union A t B and Giles intersection A u B are pointwisely
defined as follows:

(A t B)(x) 5 min [A(x) 1 B(x), 1] (2)

(A u B)(x) 5 max [A(x) 1 B(x) 2 1, 0] (3)

Since fuzzy sets remain in the same relation to an infinite-valued logic
as traditional sets to the classical two-valued logic, all operations on fuzzy
sets encountered in the above-quoted theorem can be further expressed in
the language of the infinite-valued Łukasiewicz logic, which was also done
in Pykacz (1994). Therefore, any orthomodular poset with an ordering set
of probability measures (only such orthomodular posets are physically inter-
esting), i.e., any “algebraic” QL, gives rise to a “genuine logical” QL, i.e.,
to a system of infinite-valued propositional functions defined on a set of
states of a quantum sytem with negation, disjunction, and conjunction defined
as logical connectives the truth-values of which are calculated by the formulas
(1), (2), and (3), respectively.

One of the most interesting consequences of the above-described con-
struction is the hypothesis that disjunction and conjunction of quantum
mechanical propositions should not be represented by order-theoretic opera-
tions of join (the least upper bound) and meet (the greatest lower bound), as
it was originally suggested by Birkhoff and von Neumann (1936), but rather
by Giles union (2) and intersection (3) in fuzzy set models of quantum logics
or by infinite-valued logical counterparts of these operations if we pass to
the infinite-valued Łukasiewicz logic. Actually, the most recent results
(Pykacz, n.d.) show that in fuzzy set models of quantum logics Giles opera-
tions coincide with order-theoretic ones whenever they are both defined,
which explains why the Birkhoff and von Neumann hypothesis was quite
reasonable in 1936, many years before the birth of the fuzzy set theory, and
why it persisted so many years in spite of various interpretational difficulties,
like the existence of joins and meets of incompatible elements in lattice
models of quantum logics. Giles operations, contrary to order-theoretic ones,
are pointwisely defined: the knowledge of A(x) and B(x) suffices to calculate,
via formulas (2) and (3), the values (A t B)(x) and (A u B)(x) without
knowing A( y) and B( y) for all other y P S, which is necessary in the case
of “globally defined” joins and meets. This feature of Giles operations also
enabled Pykacz and Zapatrin (1997) to use them in computations based on
the laws of a QL.
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Fig. 1. Classical adder.

3. AN EXAMPLE OF QL-BASED CALCULATIONS

I shall quote now from Pykacz and Zapatrin (1997) an example of a
logical network able to perform calculations according to the laws of a QL
instead of a two-element Boolean algebra. The procedure consists in taking
a simple network consisting of Boolean logic gates (“classical adder”) and
then replacing Boolean operations by their QL counterparts.

3.1. Classical Adder

One of the simplest mathematical models of a classical adder, often
described in standard textbooks (see, e.g., Harrison, 1995), consists of the
sequence of Boolean logic gates represented in Fig. 1. Each of these gates
is endowed with three inputs xi , yi , and ci , and two outputs si and ci11, and
works according to the truth table in Table I, where xi and yi are ith binary
digits of two numbers that we add, si is the ith binary digit of the sum (sum
bit), c0 5 0, and the carry bit ci11 emerging as the output from the ith gate
enters the next gate together with xi11 and yi11 as one of its inputs.

Instead of describing Boolean logic gates by their truth tables, one can
do it with the aid of suitable Boolean functions. In the case of a classical
adder these functions can be of the following form (see, e.g., Harrison, 1995):

si 5 xi yi ci 1 xi yici 1 xi yici 1 xi yi ci (4)

ci11 5 xi yi ci 1 xiyi ci 1 xi yici 1 xi yi ci (5)

Table I

xi yi ci si ci11

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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where 0 5 1, 1 5 0, 0 1 0 5 0, and 0 1 1 5 1 1 0 5 1 1 1 5 1, i.e.,
operations 2, ?, and 1 represent, respectively, complementation, meet, and
join in the two-element Boolean algebra or, equivalently, negation, conjunc-
tion, and disjunction in the classical two-valued logic.

It should be noticed that the formulas (4) and (5) are not the only possible
forms of Boolean functions compatible with the given truth table. The other,
equivalent, forms can be obtained from (4) and (5) with the aid of De Morgan
and distributivity laws valid in any Boolean algebra and in the classical two-
valued logic. For example, the other form of a Boolean function which yields
proper values for si is

si 5 (xi 1 yi 1 ci)(xi 1 yi 1 ci)(xi 1 yi 1 ci)(xi 1 yi 1 ci) (6)

3.2. QL-Based Adder

In Pykacz and Zapatrin (1997) we passed from the classical adder to a
QL-based adder by replacing classical operations of the two-valued logic or
the two-element Boolean algebra by their QL counterparts while leaving both
the types of logic gates and the topology of the network unchanged. We
based our construction on the results of Pykacz (1994) briefly mentioned in
Section 2 and on the hypothesis that QL conjunction and disjunction should
not be modeled by meets and joins, but by Giles intersections (3) and unions
(2), or by respective logical connectives of the infinite-valued Łukasiewicz
logic.

However, it is a typical feature of a many-valued logic, noticed already
by its founding father Jan Łukasiewicz, that the number of tautologies of a
logic decreases with the increasing number of truth-values. Therefore, many
logical formulas which are equivalent in the two-valued logic cease to be
equivalent in a QL, which was reinterpreted in Pykacz (1994) as a kind of
a partial infinite-valued logic. Consequently, much care is required in choosing
the proper form of a classical Boolean function as a starting point for our
procedure of changing a classical adder into a QL-based adder.

The proper QL expressions for si and ci11 are

si 5 (x8i t y8i t ci) u (x8i t yi t c8i ) u (xi t y8i t c8i ) u (xi t yi t ci) (7)

ci11 5 (x8i u yi u ci) t (xi u y8i u ci) t (xi u yi u c8i ) t (xi u yi u ci) (8)

where, according to the results of Pykacz (1994) quoted in Section 2, a8 5
1 2 a, a t b 5 min(a 1 b, 1), a u b 5 max(a 1 b 2 1, 0), and values of
the arguments range over the whole interval [0, 1].

It can be easily seen that although formula (7) yields the same numerical
results as both (4) and (6) when xi , yi , ci P {0, 1}, it is the formal QL
counterpart of formula (6), not (4). Similarly, (8) is a QL version of (5).
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It should be stressed that the described QL-based adder differs in its
working principle from the quantum adders studied by Peres (1985) and
Vedral et al. (1996, 1998). The difference follows from the fact that the logic
gates of which the latter adders are composed perform classical Boolean
operations [cf. the truth-tables in Fig. 3 of Peres (1985) and Fig. 1 of Vedral
et al. (1996)]. These logic gates are reversible, by which these quantum
adders differ from the classical adder described in the previous subsection,
since reversibility is a necessary requirement for logic gates used in QC.
Nevertheless, their underlying logic is still the classical two-valued logic
since, as noticed by Peres (1985), in these quantum adders, “In each elemen-
tary logical step, no generic quantum property (interference, nonseparability,
indeterminism) can be detected.” This means that these adders are “quantum”
only with respect to their physical working principles: if one prepares the
input data in the form of a superposition of qubits representing various
numbers, the adders will work in a “parallel” way acting simultaneously but
independently on all elements of the superposition. However, the logical
operations which form the mathematical basis of their computations are still
classical operations on the two-element Boolean algebra {0, 1}.

Contrary to these quantum adders, logic gates of our QL-based adder
perform genuine QL operations, so the adder is based on the “genuine” QL.
Let us note that allowed values of all numbers that appear in the formulas
(7) and (8) belong to the whole interval [0, 1]. According to the orthodox
interpretation of a QL, these numbers represent probabilities that propositions
about quantum systems (elements of a QL) turn out to be true when suitable
dichotomic (“yes–no”) experiments are done. Therefore, according to the
orthodox interpretation, a QL is still a two-valued, although nondistributive
logic. In Pykacz (1994) a QL was reinterpreted as a particular kind of infinite-
valued (and still nondistributive) Łukasiewicz logic and within this interpreta-
tion the above-mentioned numbers represent nonclassical truth-values of prop-
ositions. However, the orthodox “probabilistic” interpretation of the numbers
that appear in the formulas (7) and (8) is still very useful and in fact provides
a basis for a new way of encoding numbers described in the next section.

4. PROBABILISTIC BINARY AND GRAY CODES

Utilizing a many-valued logic in the process of computation makes the
usual binary way of encoding numbers in the form of sequences of 0’s and
1’s problematic, if not useless. On the other hand, although any experimental
proposition about a quantum system (i.e., an element of a QL) is, according
to the adopted many-valued interpretation of a QL, represented by a many-
valued propositional function before the suitable experiment is done, it “col-
lapses” into the classical, two-valued proposition after completing of the
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experiment. For example, the sentence, “A photon will pass through a polar-
izer,” is a many-valued propositional function defined on a set of all possible
states of the photon, whose truth-value in any fixed state equals the probability
that the photon in this state will actually pass through the polarizer. However,
when the experiment consisting in casting photons at the polarizer is com-
pleted, the statement, “A photon passed through a polarizer,” is either true
or false, i.e., it belongs to the realm of the classical two-valued logic and we
can denote its truth-value either by 0 or by 1.

This observation led to the new way of encoding numbers proposed in
Pykacz and Zapatrin (1997) and called there the probabilistic binary code.
According to this, a number is encoded in the form of a sequence {pi} of
real numbers pi P [0, 1] and the number pi placed at the ith position in this
probabilistic binary expansion represents the probability of getting 1 at this
place when a suitable measurement is done. This way of encoding numbers
enables us to encode not only the value of a number, but also a “degree of
certainty,” “vagueness,” or “fuzziness” of this value. Therefore, it should be
particularly well suited to deal with unexact data and could be possibly useful
in calculations performed with the aid of quantum physical systems. For
example, the number 3, whose binary expansion is 11 5 . . . 011, when
represented by the triple (0.1, 0.9, 0.8), would actually appear with the
probability (1 2 0.1) 3 0.9 3 0.8 5 0.648, while represented by the triple
(0.2, 0.8, 0.7), it would actually appear with the probability (1 2 0.2) 3 0.8
3 0.7 5 0.448, i.e., the “degree of certainty” that the second triple actually
represents the number 3 is, as expected, lower than that of the first triple.
Of course a sequence

n terms
=
(1/2, 1/2, . . . , 1/2)

represents total lack of knowledge, i.e., such a sequence represents any integer
between 0 and 2n with equal probability 1/2n.

With the proposed convention in mind, we can make a “classical simula-
tion” of the work of the QL-based adder described in the previous section,
calculating step by step the probabilities of getting 1 as values of consecutive
sum bits, and carry bits with the aid of formulas (7) and (8).

Such calculations performed, for example, on a number “nearly 2”
represented in a probabilistic binary code by a triple X 5 (0.1, 0.9, 0.1)
(instead of 010) and a number “almost 3” represented by a triple Y 5 (0.1,
0.8, 0.8) (instead of 011) give as a final result a triple X 1 Y 5 (1.0, 0.3,
0.9), which could be expressed, e.g., as “close to 5” since the binary expansion
of 5 is 101.
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As already stated, this result should be interpreted probabilistically, so
we expect that if the adder were made to run 1000 times, one would expect
to obtain 1000 triples Z 5 (z2, z1, z0) in such a way that z2 5 1 in all of
them, z1 5 1 in 300 triples (i.e., z1 5 0 in 700 triples) and z0 5 1 in 900
triples, i.e., the number 5 5 101 should be obtained with probability (1 2
0.3) 3 0.9 5 0.63, while obtaining the other combinations of 0’s and 1’s
which represent other integers would be much less probable.

Encoding numbers with the aid of the probabilistic binary code is plagued
by a serious disadvantage which I shall explain by an example. Let us assume
that a number 3 5 . . . 011 is represented, as before, by a triple (0.1, 0.9,
0.8), so the probabilty of getting the desired result is relatively high: 0.648.
Probabilities of getting wrong results are the following: p05000 5 0.018,
p15001 5 0.072, p25010 5 0.162, p45100 5 0.002, p55101 5 0.008, p65110

5 0.018, and p75111 5 0.072. The values of these probabilities are rather
counterintuitive since one would rather prefer the probabilities of getting
numbers close to 3 to be higher than probabilities of getting numbers that
differ from 3 in a more significant way. Especially counterintuitive is the
extremely low probability of getting the number 4 5 100, which stands in
the closest vicinity of 3. Unfortunately, the described phenomenon cannot
be avoided: note that when we pass from 3 5 011 to 4 5 100, all three bits
in the binary expansion are changed. Therefore, the maximal probability of
getting the sequence 011, obtained as a product of probabilities of getting
single bits, unavoidably leads to the minimal probability of getting the
sequence 100.

Fortunately, there does exist a system of encoding numbers by sequences
of 0’s and 1’s in which the described disadvantage is greatly reduced. This
system of encoding numbers is called the Gray code and it has the property
that only one bit changes during a passage from one integer to the next. A
simple rule for encoding natural numbers in this way is as follows: Represent
0 by a sequence consisting only of zeros. To get to the next number, always
change the least significant bit that yields a new number, i.e., a number that
did not appear before. Table II shows some first natural numbers represented
by straight binary and Gray codes, the number of bits that change in the
straight binary representation while passing from an integer to the next one,
and, as an example, already calculated probabilities of getting both desired
and wrong results when the number 3 is represented by the triple (0.1, 0.9,
0.8) in the probabilistic binary code, and respective probabilities when the
number 3 is represented by the triple (0.1, 0.9, 0.2) instead of 010 in the
probabilistic version of the Gray code.

We see that although the probability distribution of getting wrong num-
bers from the probabilistic Gray expansion still has some anomalies (slight
increase at the very beginning and at the very end of the distribution), it is
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Table II

Probability of
getting 3 from Probability of

Number the triple getting 3 from
Straight of bits (0.1, 0.9, 0.8) the triple
binary that Gray in straight (0.1, 0.9, 0.2)

Number code change code binary in Gray code

0 000 1 000 0.018 0.072
1 001 2 001 0.072 0.018
2 010 1 011 0.162 0.162
3 011 3 010 0.648 0.648
4 100 1 110 0.002 0.072
5 101 2 111 0.008 0.018
6 110 1 101 0.018 0.002
7 111 4 100 0.072 0.008

nevertheless much better than in the probabilistic straight binary expansion
originally proposed in Pykacz and Zapatrin (1997). Since there do exist
simple networks of exclusive-OR gates that convert straight binary to Gray
and Gray to straight binary codes, encoding numbers with the use of the
probabilistic Gray code should not lead to any computational difficulties.

5. FINAL REMARKS ON THE CONTROVERSIAL
TERMINOLOGY

A QL theorist would probably be very disappointed upon looking through
QC papers that bear the words “quantum logic” in their title, like that of
Turchette et al. (1995), and not seeing any familiar orthomodular structures
there. Even if the term “quantum logic” does not explicitly appear in a QC
paper, nearly all of them contain the expression “quantum logic gate,” which
is intuitively understood by a QL theorist as a logic gate that works according
to the laws of a QL. On the other hand, a QC theorist may be equally
disappointed looking through any of the “genuine” QL papers that appear
each year in a number comparable to QC papers.

Such misunderstandings are unavoidable as long as different groups of
people attach the same name to different objects. In the discussed case the
situation is even worse since the object “quantum logic” is not uniquely
defined by QL nor by QC theorists.

What could be done to judge whether quantum logic in the QL sense
or in the QC sense is more legitimately called “quantum logic”? In my
opinion first of all the logical background of QC should be carefully studied.
The emerging logic will surely occur to be nonclassical, first, because of the
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extensive use of superpositions with complex coefficients, which also shows
that this logic cannot be a version of an “orthodox” QL since in the latter,
complex numbers do not appear at all.2 Only when this object is extracted
from technicalities of QC papers will it be possible to check to what extent it
conforms with anything that bears the name “logic” in mathematical sciences.

On the other hand, the term “quantum logic” most frequently understood
in the QL theory as a synonym of the term “orthomodular lattice” or “ortho-
modular poset” may also yield serious misunderstandings since, in a sense,
it is neither “quantum” nor “logic”: It is not “quantum” in a sense that it is not
exclusively quantum, since Boolean algebras, which are algebraic structures
characteristic to classical physics, form a proper subfamily of the family of
orthomodular posets, so this term denotes also structures characteristic to
classical theories. It is not “logic” since it is an algebraic structure which
could be at most thought of as a Lindenbaum–Tarski algebra of a hypothetical
quantum logic proper, whatever it might be.

Such considerations suggest that the term “orthomodular algebra” coined
by Burmeister and Ma̧czyński (1994) might be the most proper synonym for
the unfortunate term “quantum logic” used in the algebraic sense, especially
in that it naturally fits into the sequence of other “algebras” (Boolean algebras,
orthoalgebras, effect algebras, . . .) that are studied within the theory of
quantum structures. Maybe members of the International Quantum Structures
Association should discuss such a change in the QL terminology during the
next Biannual IQSA Meeting in the year 2000?
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Pavičić, M. (1992). Bibliography on quantum logics and related structures, International Journal

of Theoretical Physics, 31, 373–461.
Peres, A. (1985). Reversible logic and quantum computers, Physical Review A, 32, 3266–3276.
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